Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]				
CRM08	<23-02-2021>			

<u>Preparatory Test</u>						
Dept: EC	Sem / Div: 3 A & B	Sub: Electronic Devices	S Code: 18EC33			
Date: 24-02-2021	Time: 9:30-12:30 pm	Max Marks: 100	Elective:N			
Note: Answer any 2 full questions, choosing one full question from each part.						

Q	N	Questions	Marks	RBT	COs	
	Module 1					
1	a E	Explain the effects of temperature and doping on mobility.	7	L2	CO1	
	bC	Calculate the value of resistivity of intrinsic silicon at room	7	L3	CO1	
		emperature.	(TO	001	
	c E b	Explain classification of material based on conductivity and energy band diagram.	6	L2	COI	
		OR				
2	a V e	What are direct and indirect band gap semiconductors? Explain with examples.	7	L2	CO1	
	bN	What are the types of bonding forces in solids? Explain.	5	L2	CO1	
	c V h E	What is the magnitude of Hall voltage in a N type Germanium bar naving a majority carrier concentration $N_D=10^{17}$ cm ³ . Assume $B=0.2Wb/m^2$, $d=2mm$ and $E=10V/cm$	8	L3	CO1	
	Module 2					
3	a V	What is injection electro-luminescence and what are its applications?	7	L2	CO2	
	b E u	Explain the qualitative description of current flow at pn junction under equilibrium and biased condition.	8	L2	CO2	
	сI	Ilustrate the working of a photodetector.	5	L2	CO2	
	OR					
4	a V	With the help of I-V characteristics explain the optical generation of	8	L2	CO2	
	c	carriers in a pn junction.				
	bE	Explain the I-V characteristics of an illuminated solar cell.	6	L2	CO2	
	cI	Distinguish between Zener breakdown and avalanche breakdown.	6	L2	CO2	

		Module 3			
5	a	Explain the effect of base narrowing on the characteristics of a BJT.	6	L2	CO3
	b	Explain the process flow for double polysilocon, self aligned npn BJT.	9	L2	CO3
	c	Explain the switching operations in common emitter transistor.	5	L2	CO3
		OR			
6	a	With the help of I-V characteristics and schematic diagram explain the	7	L2	CO3
	b	Write a note on the coupled diode model and derive the Ebers-Moll equations.	7	L2	CO3
	c	Discuss the various factors involved in transistor amplification.	6	L2	CO3
	Module 4				
7	a	Draw the energy band diagrams of a MOS capacitor with n-type substrate in accumulation, depletion, and inversion mode.	7	L2	CO3
	b	Explain P-channel enhancement and depletion type MOSFET with their circuit symbols.	6	L2	CO3
	c	Draw the structure of a n-channel JFET and discuss the V-I characteristics	7	L2	CO3
		OR			

-

Vivekc	inanda College of Engin	u nda College of Engineering & Technology,Puttur	
[A	Unit of Vivekananda Vidy	nit of Vivekananda Vidyavardhaka Sangha Puttur ®]	
Affil	iated to VTU, Belagavi & /	ed to VTU, Belagavi & Approved by AICTE New Delhi	
CRM08	Rev 1.10	<ec></ec>	<23-02-2021>

	<u>Preparatory Test</u>							
8	a	Sketch the C-V characteristics of an MOS capacitor with n-type substrate	7	L2	CO3			
		under the low-frequency condition and explain.						
	b	With a neat diagram explain the small signal equivalent circuit of a n-	8	L2	CO3			
		channel JFET.						
	c	Discuss the frequency limitation factors of a JFET and define the cutoff	5	L2	CO3			
		frequency.						

		Module 5			
9	а	What is rapid thermal processing? Explain in brief.	8	L2	CO4
	b	Classify the ICs based on their use and method of fabrication	6	L2	CO4
	c	Discuss the advantages of ICs in terms of miniaturization.	6	L2	CO4
OR					
10)a	With a schematic diagram explain the ion implantation system.	7	L2	CO4
	b	Explain the thermal oxidation process used in the fabrication of pn	7	L2	CO4
		junctions			
	c	Illustrate the common fabrication steps used for CMOS integrated	6	L2	CO4
		circuits.			